13 research outputs found

    Hi-MC: a novel method for high-throughput mitochondrial haplogroup classification

    Get PDF
    Effective approaches for assessing mitochondrial DNA (mtDNA) variation are important to multiple scientific disciplines. Mitochondrial haplogroups characterize branch points in the phylogeny of mtDNA. Several tools exist for mitochondrial haplogroup classification. However, most require full or partial mtDNA sequence which is often cost prohibitive for studies with large sample sizes. The purpose of this study was to develop Hi-MC, a high-throughput method for mitochondrial haplogroup classification that is cost effective and applicable to large sample sizes making mitochondrial analysis more accessible in genetic studies. Using rigorous selection criteria, we defined and validated a custom panel of mtDNA single nucleotide polymorphisms that allows for accurate classification of European, African, and Native American mitochondrial haplogroups at broad resolution with minimal genotyping and cost. We demonstrate that Hi-MC performs well in samples of European, African, and Native American ancestries, and that Hi-MC performs comparably to a commonly used classifier. Implementation as a software package in R enables users to download and run the program locally, grants greater flexibility in the number of samples that can be run, and allows for easy expansion in future revisions. Hi-MC is available in the CRAN repository and the source code is freely available at https://github.com/vserch/himc

    Fine Mapping and Identification of BMI Loci in African Americans

    Get PDF
    Genome-wide association studies (GWASs) primarily performed in European-ancestry (EA) populations have identified numerous loci associated with body mass index (BMI). However, it is still unclear whether these GWAS loci can be generalized to other ethnic groups, such as African Americans (AAs). Furthermore, the putative functional variant or variants in these loci mostly remain under investigation. The overall lower linkage disequilibrium in AA compared to EA populations provides the opportunity to narrow in or fine-map these BMI-related loci. Therefore, we used the Metabochip to densely genotype and evaluate 21 BMI GWAS loci identified in EA studies in 29,151 AAs from the Population Architecture using Genomics and Epidemiology (PAGE) study. Eight of the 21 loci (SEC16B, TMEM18, ETV5, GNPDA2, TFAP2B, BDNF, FTO, and MC4R) were found to be associated with BMI in AAs at 5.8 × 10−5. Within seven out of these eight loci, we found that, on average, a substantially smaller number of variants was correlated (r2 > 0.5) with the most significant SNP in AA than in EA populations (16 versus 55). Conditional analyses revealed GNPDA2 harboring a potential additional independent signal. Moreover, Metabochip-wide discovery analyses revealed two BMI-related loci, BRE (rs116612809, p = 3.6 × 10−8) and DHX34 (rs4802349, p = 1.2 × 10−7), which were significant when adjustment was made for the total number of SNPs tested across the chip. These results demonstrate that fine mapping in AAs is a powerful approach for both narrowing in on the underlying causal variants in known loci and discovering BMI-related loci

    GWAS of random glucose in 476,326 individuals provide insights into diabetes pathophysiology, complications and treatment stratification

    Get PDF
    Conventional measurements of fasting and postprandial blood glucose levels investigated in genome-wide association studies (GWAS) cannot capture the effects of DNA variability on ‘around the clock’ glucoregulatory processes. Here we show that GWAS meta-analysis of glucose measurements under nonstandardized conditions (random glucose (RG)) in 476,326 individuals of diverse ancestries and without diabetes enables locus discovery and innovative pathophysiological observations. We discovered 120 RG loci represented by 150 distinct signals, including 13 with sex-dimorphic effects, two cross-ancestry and seven rare frequency signals. Of these, 44 loci are new for glycemic traits. Regulatory, glycosylation and metagenomic annotations highlight ileum and colon tissues, indicating an underappreciated role of the gastrointestinal tract in controlling blood glucose. Functional follow-up and molecular dynamics simulations of lower frequency coding variants in glucagon-like peptide-1 receptor (GLP1R), a type 2 diabetes treatment target, reveal that optimal selection of GLP-1R agonist therapy will benefit from tailored genetic stratification. We also provide evidence from Mendelian randomization that lung function is modulated by blood glucose and that pulmonary dysfunction is a diabetes complication. Our investigation yields new insights into the biology of glucose regulation, diabetes complications and pathways for treatment stratification

    Supplemental material for Racial differences in patients referred for right heart catheterization and risk of pulmonary hypertension

    No full text
    <p>Supplemental material for Racial differences in patients referred for right heart catheterization and risk of pulmonary hypertension by Bin Q. Yang, Tufik R. Assad, Jared M. O'Leary, Meng Xu, Stephen J. Halliday, Reid W. D'Amico, Eric H. Farber-Eger, Quinn S. Wells, Anna R. Hemnes and Evan L. Brittain in Pulmonary Circulation</p
    corecore